AC Circuits

$$
v(t)=V_{0} \cos \omega t \quad \omega=2 \pi f
$$

by Shun's law: $V=I R$

$$
\therefore I(t)=\frac{V_{0}}{R} \cos \omega t
$$

concent er voltage are in phase. why important?

Power oscillates. Average power: $\bar{D}=\frac{1}{T} \int_{0}^{T} P(t) d t w T=2 \pi$

$$
\bar{P}=\frac{1}{T} \frac{V_{0}^{2}}{R} \underbrace{\int_{0}^{T} \cos ^{2} \omega t d t}_{\frac{1}{2}(1+\underbrace{\cos 2 \omega t}_{\text {inter } 2 \omega t}}
$$

so $\bar{D}=\frac{1}{T} \frac{V_{0}^{2}}{Z} \frac{T}{2} \quad$ integrates to ϕ

$$
=\frac{1}{2} \frac{V_{7}^{2}}{2} \text { are power }=\frac{1}{2} \text { max power }
$$

RMS root wean square

$$
\begin{aligned}
& V_{\text {rms }}=\sqrt{V^{2}} \quad \text { note: } \overline{v^{2}} \neq \bar{v}^{2} \\
& \overline{V^{2}}=\frac{1}{T} \int_{0}^{T} V^{2}(t) d t=\frac{V_{0}^{2}}{T} \int_{0}^{T} \cos ^{2} \omega t d t=\frac{V_{0}^{2}}{2} \\
& \therefore V_{\text {RMs }}=\frac{V_{0} \nabla}{\sqrt{2}} \text { max voltage } \\
& \text { similculy } \text { Prus }^{T}=\frac{I_{0}}{\sqrt{2}}=\frac{V_{0}}{\sqrt{2} R} \\
& \therefore \bar{P}=\frac{1}{2} \frac{V_{0}^{2}}{R}=\frac{1}{2} V_{0} \cdot \frac{V_{0}}{R}=\frac{V_{0}}{\sqrt{2}} \cdot \frac{I_{0}}{\sqrt{2}}=V_{\text {rus }} \text { Irms }
\end{aligned}
$$

in home $V_{\text {rain }}=120$ Volts
of you draw IOA, that's Poms

$$
\begin{aligned}
& \text { so } \bar{P}=120 \cdot 10=1.2 \mathrm{~kW} \\
& V=I R+\frac{L d I}{d t} \\
& I R-V=L \frac{d I}{d t} \\
& I-V / R=\frac{L}{R} \frac{d I}{d t} \\
& I-I_{0}=\frac{d I}{d t} \quad C=L / R
\end{aligned}
$$

AC w/ Inductor

$$
\begin{aligned}
& V=V_{0} \cos \omega t \rightarrow V_{0} e^{i \omega t} \\
& V_{L}=L \frac{d I}{d t}=V \\
& \frac{d I}{d t}=\frac{V}{L}=\frac{V_{0} e^{i \omega t}}{L} \\
& I=\frac{V_{0}}{i \omega L} e^{i \omega t} \\
& \text { "resistance" }
\end{aligned}
$$

$X_{L}=i \omega L$ reactance of ind.
note: as $\omega \rightarrow \infty$ inductor impedance $\rightarrow \infty$ so inductor is "low pase filter" lets low freq signals thu e to get $I(t)$ keep only real pent

$$
\begin{aligned}
I & =\frac{V_{0}}{i \omega L} e^{i \omega t}=\frac{-i V_{0}(\cos \omega t+i \sin \omega t)}{\omega L} \\
& =\frac{V_{0}}{\omega L} \sin \omega t \frac{i V_{0}}{\omega L} \cos \omega t \\
V & =V_{0} \cos \omega t
\end{aligned}
$$

$$
I=\frac{V_{0}}{\omega L} \sin \omega t=\frac{V_{0}}{\omega L} \cos (\omega t-\pi / 2)
$$

cmrent "lags" voltage by 90°
average power: $P_{\text {aw }}=\frac{1}{T} \int_{0}^{T} I(t) V(t) d t$

$$
=\frac{1}{T} \frac{V_{0}^{2}}{\omega L} \int_{0}^{T} \sin \omega t \cos \omega t=0
$$

no power loss in (ideal) inductor (assumes $R_{i}=0$)

Ac wlcapacitor

$$
V=V_{\partial} e^{i \omega t}
$$

$$
V_{c}=\frac{Q}{C} \Rightarrow Q=V_{c} C=V C
$$

$$
I=\frac{d Q}{d t}=\frac{C d}{d t} V_{0} e^{i \omega t}=V_{0} i \omega C e^{i \omega t}=\frac{V_{0}}{x_{c}} e^{i \omega t}
$$

$x_{c}=\frac{1}{i \omega c}$ capacitor $X_{c} \rightarrow \alpha$ as $\omega \rightarrow 0$ DCopen capacitor filters ont low fug, passes high "high pass filter"

$$
\begin{aligned}
I & =V_{0} i \omega C e^{i \omega t}=V_{0} \omega C i(\cos \omega t+i \sin \omega t) \\
& =\frac{-V_{0}}{1 / \omega C} \sin \omega t
\end{aligned}
$$

P_{c} also yer $i n$ same reason as capacitor
$-\sin \omega t=\cos (\omega t+\alpha)=\cos \omega t \cos \alpha-\sin \omega t \sin \alpha$

$$
\alpha=\pi / 2
$$

so $I=\frac{V_{0}}{1 / \omega c} \cos (\omega t+\pi / 2)$
current "leads" voltage by $\pi / 2$

LC
change up plates, Q
voltage with be $V=Q / C$
close switch: $\frac{Q}{C}=-L \frac{d I}{d t}$

$$
\begin{aligned}
& \frac{Q}{C}+L \frac{d I}{d t}=0 \\
& \frac{d^{2} Q}{d t^{2}}+\frac{1}{L C} Q=0 \quad Q=Q_{0} \cos \omega_{0} t \quad \omega_{0}=\frac{1}{\sqrt{L C}}
\end{aligned}
$$

$\omega_{0} \Rightarrow$ natural freq of oscillation
no power loss in C or $L \therefore$ energy just oscillates be tween E^{2} in cap $\left\{B^{2}\right.$ in inductor

AC and LR

$$
V=V_{0} e^{i \omega t}=I Z
$$

Z = complex impedance

so $\quad R=\frac{v_{0} e^{i \omega t}}{R+i \omega L}$
write R +iwL $=\sqrt{R^{2}+(\omega L)^{2}} e^{i \phi} \quad \tan \phi=\frac{\omega L}{R}$

$$
=R \sqrt{1+\left(\frac{w L}{R}\right)^{2}}
$$

Let $\tau=L / R$ decay time for L in $D C$ circuit
then $I=\frac{V_{0} e^{i \omega t} e^{-i \phi}}{R \sqrt{1+(\omega \tau)^{2}}}=\frac{V_{0} \cos (\omega t-\phi)}{R \sqrt{1+(\omega t)^{2}}}$
can write $I_{0}(\omega)=\frac{V_{0}}{R} \frac{1}{\sqrt{1+(\omega T)^{2}}}$

$$
I(\epsilon)=I_{0}(\omega) \cos (\omega t-\phi) \quad \tan \phi=\frac{\omega L}{R}=\frac{X_{L}}{R}
$$

ratio complex /real impedance

$$
\begin{aligned}
& \bar{P}_{\text {delivered }}=\overline{I V}=\frac{V_{0}^{2}}{R} \frac{1}{\sqrt{1}} \frac{1}{T} \int_{0}^{T} \cos (\omega t-\phi) \cos \omega t d t \\
& =\frac{V_{0}^{2}}{R} \frac{1}{\sqrt{n}} \frac{1}{T} \int(\cos \omega t \cos \phi+\sin \omega t \sin \pi)^{\circ} \cos \omega t d t \\
& =\frac{V_{0}^{2}}{2 R} \frac{1}{\sqrt{1+(\omega t)^{2}}} \cos \phi \\
& \left.\bar{P}_{R}=\overline{I^{2} R}=\frac{1}{T} \frac{V_{0}^{2} R}{R^{2}\left(1+(\omega t)^{2}\right.} \int_{0}^{T} \omega^{2} \omega t-\phi\right) d t=\frac{V_{0}^{2}}{2 R\left(1+(\omega t)^{2}\right)} \\
& \overline{P_{L}}=\overline{I L \frac{d I}{d t}}=\overline{\frac{V_{0}}{R J} \cos (\omega t-\phi) \frac{L(-\omega) V_{0}}{R J}} \sin (\omega t-\phi)=0 \\
& \bar{P}_{\text {dol }}=\bar{P}_{R} \quad \text { so } \quad \cos \phi=\frac{1}{\sqrt{1+(\omega \tau)^{2}}} \\
& \tan \phi=\frac{\omega L}{\tau}=\omega \tau \Rightarrow 1+\tan ^{2} \phi=\sec ^{2} \phi=1+(\omega \tau)^{2}
\end{aligned}
$$

$I(\omega) \rightarrow 0$ as $\omega \rightarrow \infty$ because L is low pass

We can ground part of the circuit to set EM potential to be zero there.
\Rightarrow Voltage Vout $=$

v voltage across Mesisfor

$$
V_{\text {out }}=I R=\frac{V_{0} \cos (\omega t-\phi)}{\sqrt{1+(\omega \tau)^{2}}}
$$

as $\omega \rightarrow 0$, $V_{\text {out }} \rightarrow V_{0}$ low pass $w \rightarrow \infty$, Jour $\rightarrow 0$ filters ont high frequencies
now swap $L B$

voltage across inductor::

$$
\begin{gathered}
V_{\text {out }}=V_{L}=I X_{L}=\frac{i V_{0} \omega e^{i(\omega t-\phi)}}{R \sqrt{1+(\omega)^{2}}} \\
R_{e}\left(V_{\text {ont }}\right)=R_{e}\left(V_{0} \omega L_{i}[\cos (\omega t-\phi)+i \sin (\omega t-\phi)]\right) \\
V_{\text {out }}=\frac{-V_{\text {owL }} \sin (\omega t-\phi)}{R \sqrt{ }}
\end{gathered}
$$

since ω is in numerator, V out $\rightarrow 0$ as $\omega \rightarrow 0$ as $\omega \rightarrow \infty$, $\frac{\omega L}{\sqrt{1+(\omega \tau)^{2}}} \rightarrow \mathbb{R}, V_{\text {out }} \rightarrow V_{0}$ this filters ont low frequencies!
\Rightarrow basically, induc for allows low to pace to ground leaving high frequencies

AC RC circuits

$$
\begin{gathered}
x_{c}=\frac{1}{\omega C}, Z_{c}=\frac{1}{i \omega c} \\
z=R+z_{c}=R+\frac{1}{i \omega C}=\sqrt{R^{2}+\frac{1}{(\omega c)^{2}} e^{i \phi}} \\
\tan \phi=\frac{1}{\omega R C}
\end{gathered}
$$

here $R C=$ decay constant for $R C$ discharge
let $\tau=R C$ and write $\sqrt{R^{2}+\frac{1}{(w C)^{2}}}=R \sqrt{1+\frac{1}{\left(\omega \tau s^{2}\right.}}$

$$
\text { so } I=\frac{V}{z}=\frac{V_{0} e^{i \omega t}}{R \sqrt{1+1(\omega t)^{2} e^{i \phi}}}=\frac{V_{0}}{R} \frac{e^{i(\omega t-\phi)}}{\sqrt{1+1 /(\omega t)^{2}}}
$$

similar to RL!

Gout
ground circuit ad look at Vat

$$
V_{\text {out }}=I R=\frac{V_{0} \cos (\omega t-\phi)}{\sqrt{1+11(\omega t)^{2}}}
$$

$\cos \omega \rightarrow \infty$ Vout $\rightarrow V$ high pass filter swap $R^{\grave{ }} \cdot C$ to get low pass filter
lar

$V=V_{0} \cos \omega t \rightarrow V_{0} e^{i \omega t}$
L complex impedance z

$$
\begin{aligned}
z & =R+i \omega L+\frac{1}{i \omega c} \\
& =R+i(\omega L-1 / \omega c)
\end{aligned}
$$

write z in exponential form $z=r e^{i} \phi$
where $r=\sqrt{R^{2}+(\omega L-c / \omega c)^{2}}$ and $\tan \phi=\frac{\omega l_{1}-1 / \omega c}{R}$
then use "Ohm's" law equivalent $V=I Z$
solve for $I=\frac{V}{z}=\frac{V_{0} e^{i \omega t}}{r e i \phi}=\frac{V_{0}}{r} e^{i(\omega t-\phi)}$
now keep real part to get

$$
I=\frac{V_{0}}{r} \cos (\omega t-\phi)=\frac{V_{0} \cos (\omega t-\phi)}{\sqrt{8^{2}+\left(\omega t-\frac{1}{\omega a}\right)^{2}}}
$$

write $I(\omega)=\frac{V_{0}}{\sqrt{R^{2}+(\omega L-1 / \omega)^{2}}}$ gives

$$
I(t)=I(\omega) \cos (\omega t-\phi)
$$

properties of $I(\omega)$:
$I(0)=0$ ('lie term dominates)
$I(\alpha)=0$ (cL " ")
$I\left(\omega_{m}\right)$ is a max when $\omega_{m} h-\frac{1}{\omega_{m C}}=0$

$$
\text { or } \omega_{m}=1 / \sqrt{L C}
$$

this is the resonance reef of LC part

$$
\omega_{m}=\omega_{0}=1 / \sqrt{h C}
$$

Resonance! when dive system at $\omega=\omega_{0}$, maximizes response
$I(\omega)$

noble as $\mathbb{R} \rightarrow 0, I\left(\omega_{0}\right) \rightarrow \infty$ so its wore "peaked" \Rightarrow this happens when yon miniming \&, n reduce energy loss thou resistance
can charareterige how wide r peaked signal is P dissipated is then resistor (load)

$$
P=I^{2} R=\frac{V_{0}^{2} \cos ^{2}(w t-\theta)}{R^{2}+1} \cdot R
$$

wax is at $P_{\max }=\frac{V_{0}^{2}}{R}$
Find w where $P=\frac{1}{2} P_{\text {max }}$

can calculate ω^{-}\& ω^{+}

$$
P(\omega)=\frac{1}{2} P_{\max }=\frac{V_{0}^{2}}{2 R}=\frac{V_{0}^{2} R}{R^{2}+(\omega L-1 / \omega c)^{2}}
$$

so $2 R^{2}=R^{2}+\left(\quad J^{2}\right.$

$$
R^{2}=(\omega L-c / \omega c)^{2} \text { or } \omega L-\frac{1}{\omega c}= \pm R
$$

2 solutions as expected
for $+R$ solution: $\quad \omega L-\frac{1}{\omega C}=R$

$$
\begin{aligned}
& \omega^{2} L-R \omega-1 / c=0 \\
& \omega^{2}-\frac{R}{L} \omega-\frac{1}{L C}=0
\end{aligned}
$$

write as $\omega^{2}-\omega / \tau-\omega_{0}^{2}=0 \quad \bar{c}=L / R$

$$
\omega_{0}^{2}=1 \ln C
$$

Solves as $\omega=\frac{\frac{1}{\tau} \pm \sqrt{\frac{1}{\tau^{2}}+4 w_{0}^{2}}}{2}$
only "t" solution gives $\omega>0$ so write

$$
\omega^{+}=\frac{1}{2 \tau}+\sqrt{\frac{1}{4 \tau^{2}}+\omega_{0}^{2}}
$$

alter more math can show other solution

$$
\begin{gathered}
\omega^{-}=\frac{-1}{2 \tau}+\sqrt{\frac{1}{4 \tau^{2}}+\omega_{0}^{2}} \\
\Delta \omega=\omega^{t}-\omega^{-}=\frac{1}{2 \tau}+\sqrt{ }-\left(-\frac{1}{2 \tau}+\sqrt{ }\right) \\
\Delta \omega=\frac{1}{\tau}=\frac{R}{L} \text {, drakes seance }
\end{gathered}
$$

quality factor " Q " $=\frac{\omega_{0}}{\Delta \omega}$ how peaked

$$
\begin{aligned}
Q & =\frac{\omega_{0}}{\Delta \omega}=\omega_{0} \bar{C}=\frac{\omega_{0} L}{R} \Rightarrow \text { ratio of complex } \\
& =\frac{X_{L}}{R}
\end{aligned}
$$

want $Q \rightarrow \infty$ for highly selective filtering note at resonance, $\omega_{0} L=\frac{1}{\omega_{0} C}$ o $X_{L}=X_{C}$
so $Q=\frac{K_{C}}{\Sigma}=\frac{X_{L}}{\Sigma}$ either way
average power delivered gets dissipated only thine real resistance R

$$
\begin{aligned}
\bar{P} & =\frac{\int_{0}^{T} P(t) d t}{} \quad \text { where } \omega T=2 \pi \\
& =\frac{1}{1} \int_{0}^{T} V_{0} I(\omega) \cos \omega t \cos (\omega t-\phi) d t \\
& =V_{0} I(\omega) \int_{\sqrt{ }} \cos \omega t[\cos \omega t \cos \phi+\sin \omega t \sin \phi] d t
\end{aligned}
$$

$$
\text { note: } \int_{0}^{T} \cos \omega t \sin \omega t d t=\frac{1}{2} \int_{0}^{T} \sin 2 \omega t d t
$$

$$
=\frac{1}{4 \omega}-\left.\cos \omega t\right|_{0} ^{T}=\frac{1}{4 \omega}[1-\cos 2 \pi]=0
$$

$$
\int \cos ^{2} u t d t=\int_{0}^{T} \frac{1}{2}(1+\cos 2 \omega t) d t=\frac{T}{2}
$$

$$
\begin{aligned}
\therefore \bar{P}=\frac{V_{0} I(\omega) \cos \phi=}{2}= & \frac{V_{0}}{\sqrt{2}} \frac{I(\omega) \cos \phi}{\sqrt{2}} \\
& V_{\text {rims }} \text { Iris }
\end{aligned}
$$

$$
\bar{P}: \text { Vries Prus } \underbrace{\text { cos } \phi}_{\text {"power factor" }}
$$

LCR crocuits - dill equ's

$$
\begin{aligned}
& V=V_{0} \cos \omega t=V_{R}+V_{L}+V_{C} \\
& V_{B}=I R=R \frac{d Q}{d t} \\
& V_{L}=L \frac{d I}{d t}=L \frac{d^{P} Q}{d t^{2}} \\
& V_{C}=\frac{Q}{C}
\end{aligned}
$$

diffegn is: $L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{Q}{C}=V_{0} \cos \omega t$
solve for $Q(t)$
\Rightarrow this is the same dill eg, for a mass on a spring that is driven by a force $F(t)$ w/ wind usistance
wind
Nindistance

$$
\begin{aligned}
& F_{\text {spine }}=-k x \\
& \left.F_{\text {resist }}=-b v=-b \frac{d x}{d t} \right\rvert\,-F(t) \\
& \text { ma: } \left.\frac{d^{2} x}{d t^{2}}=-b x-b v+F \right\rvert\, t \\
& \text { or } \quad \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+b x=F(t)
\end{aligned}
$$

$$
\left\lvert\, \frac{k}{-\infty} \frac{1}{1}-E(t)\right.
$$

same equation!
$m \Leftrightarrow L$ inductance (inertia") $b \Leftrightarrow R$ escotance (energy dissipation) $k \Leftrightarrow \frac{1}{C}$ "elastic" force $F(t) \Leftrightarrow V(t)$ driver
so we know $x(t)=x(\omega) \cos (\omega t-\phi)$ and $\omega_{0}^{2}=\frac{1}{\omega c} \Rightarrow \frac{k}{m}$
and $x(\omega)$ has same form as above

quality faction $Q=\frac{\omega_{0}}{\Delta \omega}=\frac{\omega_{0} L}{R} \Rightarrow \frac{\omega_{0} m}{b}$ as $b \rightarrow x, x(w)$ becomes narrowed

Parallel LCR

remember with resistors:

$$
R_{1} \sum_{T}^{1} \xi_{2}=\left\{R_{3}\right.
$$

and $\frac{1}{R_{3}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ parallel
so the complex imedance of the parallel L_{1}, C looks the same as for real impedances

impedance of " x " is:

$$
\begin{aligned}
\frac{1}{x} & =\frac{1}{x_{L}}+\frac{1}{x_{L}}=\frac{1}{i \omega L}+i \omega c \\
& =i\left(\omega c-\frac{1}{\omega L}\right) \\
x & =\frac{1}{i\left(\omega c-\frac{1}{\omega L}\right)}=\frac{-i}{\left(\omega c-\frac{1}{\omega L}\right)}
\end{aligned}
$$

we analyze this just like the series LCR

$$
\begin{aligned}
& V=V_{0} e^{i \omega t} \\
& I=\frac{V}{Z} \\
& Z=R-i r \quad \text { where } r=\frac{1}{\omega L-\frac{1}{\omega L}}
\end{aligned}
$$

we write $Z=\sqrt{R^{2}+r^{2}} e^{i \phi}$

$$
\Rightarrow I(t)=\frac{V_{0} e^{i \omega t}}{\sqrt{R^{2}+r^{2}} e^{i \phi}}=\frac{V_{0} e^{i(\omega t-\phi)}}{\sqrt{ }}
$$

keeping only the bal parts:

$$
\begin{aligned}
I(t) & =\frac{V_{0} \cos (\omega t-\phi)}{\sqrt{R^{2}+r^{2}}} \\
\text { but } r & =\frac{1}{\omega C-\frac{1}{\omega L}} \text { parallel } L C R \\
r & =\omega L-\frac{1}{\omega C} \text { series } \\
r & \rightarrow 0 \text { as } \omega \rightarrow \omega_{0}=1 / \sqrt{l C} \text { so } 1 / r \rightarrow \infty
\end{aligned}
$$

note: for series $L C K, \omega=\omega_{0}$ maximizes $I(\omega)$ for parallel $w=$ wo minimings"

$$
P_{\text {owe }}=I^{2} R=\frac{V_{0}^{2} R}{R^{2}+r^{2}} \cos ^{2}(\omega t-\phi)
$$

power is minimized at $\omega=\omega_{0}$?

Transformers
Farad day's law fo coils w) N turns

$$
V_{1}=V_{0} \cos \omega t
$$

put iron core thun both coils, and connect them B will run around the core
coil 1 = "primary"
$\operatorname{coil} 2 \equiv$ "second dan
in primary, $\bar{\Phi}_{1}=B_{1} A_{1}$
in secondary, $\Phi_{2}=B_{2} A_{2}$
$B_{1} \neq B_{2}$ I $\quad B \not \pm$ field lines
but $\Phi_{1}=\Phi_{2}$ flux B conserved
if $A_{1}>A_{2}$ then more field lines would have to "squeeze" thun a smaller area
so if $\Phi_{1}=\Phi_{2}$ then $\frac{d \Phi_{1}}{d t}=\frac{d \Phi_{2}}{d t} \equiv \frac{d \Phi}{d t}$ now apply Faraday's law to each coil

$$
\begin{aligned}
\varepsilon_{1} & =-N_{1} \frac{d \Phi}{d t} \text { and } \varepsilon_{2}=-\frac{N_{2} d \Phi}{d t} \\
& \because \frac{\varepsilon_{1}}{N_{1}}=\frac{\varepsilon_{2}}{N_{2}} \text { flansformer equation }
\end{aligned}
$$

ex: say we want $\varepsilon_{1}=10 \mathrm{~V}$ and $\varepsilon_{2}=100 \mathrm{~V}$

$$
\begin{aligned}
& \frac{\varepsilon_{1}}{N_{1}}=\frac{\varepsilon_{2}}{N_{2}} \\
& \frac{\varepsilon_{1}}{\varepsilon_{2}}=\frac{N_{1}}{N_{2}}=\frac{10}{100}=0.1
\end{aligned}
$$

if we build trans forme with 100 tuns in primary $\left(N_{1}=100\right)$ then the secondary will need $N_{2}=\frac{N_{1}}{0.1}=10 N_{1}=1000$ tarns
This is called a "step up" transformer. what abort current?
Power has to be the same in both primary and secondary!

Power $=I \cdot V$ is energy $/ \mathrm{sec}$ and energy is always conserved!
so $I_{1} \varepsilon_{1}=I_{2} \varepsilon_{2}$ but $\varepsilon_{2}=\varepsilon_{1} N_{2} / M$
so $I_{1} \varepsilon_{1}=I_{2} \frac{\varepsilon_{1} N_{2}}{N_{1}} \Rightarrow N_{1} I_{1}=N_{2} I_{2}$
in Mevious example, $N_{1}=100, N_{2}=10$ so $I_{1} \geqslant I_{2}$
step up transformer trades low V, high I for high V low I
How can we we this?

any power source pushes
 current the load R can we neglect resistance of wires?
loads usually have resistance $R \sim 100^{\prime}$ s or more
Copper wire: $2 v$ gunge $=0.032$ in diameter

$$
=0.81 \mathrm{~mm}
$$

resistance is 10.15Ω per 1000 ft
so in lab, length of wire $\sim 1-10 \mathrm{ft}$ total resistance wore is orr fol ft . I for 10 ft $R_{\text {wires }}$ is negligible compared to load resistances

14 gauge wire: 0.064 in $=1.6 \mathrm{~mm}$
resistance $=2.53 \Omega \mathrm{per} 1000 \mathrm{ft}$
now build power plant that gever afes current and sends it -20 miles on 14 gauge copper wire

$$
20 \text { miles }=10^{5} \mathrm{ft}
$$

resistance 14 gauge wire $=\frac{2.53}{1000 \mathrm{ff}} \Omega+10_{f_{7}}^{5}=253 \Omega$
Microwave oven has internal resistance $R_{L}=24 \Omega$ if $\mathrm{V}=120 \mathrm{~V}$ then it dooms 5 A
Power needed is I.V $=600 \mathrm{~W}$
if wire resistance is 253Ω, then power dissipated in wires is

$$
P_{R}=I^{2} R=5^{2} \cdot 253 \cong 6,300 \mathrm{~W}
$$

so most of the power generated goes into heating hans mission wises!

basic idea for transformers: transmit of high voltage flow current to minimize current losses: $P=T^{2} R$

